Lines and Circles

1. A line has the equation $x^{2}+y^{2}=25$.

What is the length of this line?
2. A circle has the equation $(x+7)^{2}+(y-3)^{2}=25$.
a What are the co-ordinates of the centre of this circle?
b What is the area of the circle?
3. A circle has the equation $x^{2}+y^{2}=49$.

Another line has the equation $y=x+2$.
At what points do these two lines intersect each other?
4. A circle A has the equation $x^{2}+y^{2}=81$.

Another line B runs through the points $(-12,-2)$ and $(-10,1)$.
$a \quad$ Find the equation of line B.
b. Find the co-ordinates of the points where line B intersects circle A.
5. A circle A has the equation $(x-5)^{2}+(y-8)^{2}=36$. Another line B runs through the points $(-14,-2)$ and $(-4,2)$. Find the equation where the line B intersects with circle A.

Success Criteria	Completed
I can identify the radius of a circle from the equation of the circle in the form $x^{2}+y^{2}=r^{2}$	
I can calculate the circumference of a circle using the formula $C=2 \pi r$	
I can calculate the area of a circle using the formula $A=\pi r^{2}$	
I can find the centre of a circle from the equation of the form: $(x-a)^{2}+(x-b)^{2}=r^{2}$	
I can find the gradient of a straight line given two points.	
I can find the intercept of a straight line given a gradient and a point.	
I can fine the equation of a straight line in the form $y=m x+c$	
I can solve simultaneous equations including an equation in quadratic form by substitution.	

Lines and Circles Examples
1 A line has the equation $x^{2}+y^{2}=64$.
What is the radius?
General equation for a circle is $x^{2}+y^{2}=r^{2}$ where r is the radius.
So the radius of $x^{2}+y^{2}=64$ is $\sqrt{64}=8$.
What is the circumference?

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \times \pi \times 8 \\
& =16 \pi \\
& \simeq 50.2654826 \\
& \simeq 50.27 \quad\left(t_{0} 2 \text { d.p. }\right)
\end{aligned}
$$

What is the area?

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi \times 8 \times 8 \\
& =64 \pi \\
& \simeq 201.0619298 \\
& \simeq 201.06 \text { (to 2d.p.) }
\end{aligned}
$$

$2(x+a)^{2}+(y+b)^{2}=64$ would yield a circle of the same size as $x^{2}+y^{2}=64$.
The difference would be the co-ordinates of the centre of the circle. These would be $(-a,-b)$. So a circle with the equation $(x-5)^{2}+(y+3)^{2}=64$ would have a radius of 8 and a centre at $(5,-3)$ as a minus x a minus is a plus ad a plus tomes a minus is a minus.
3. A circle has the equation $x^{2}+y^{2}=64$.

A line has the equation $y=x+3$.
How do you find the intersecting points?

$$
x^{2}+y^{2}=64
$$

Substitute $x+3$ for y.

$$
\begin{array}{lr}
\therefore & x^{2}+x^{2}+6 x+9=64 \\
\therefore & 2 x^{2}+6 x-55=0
\end{array}
$$

Use the Quadratic formulae:

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { for } a x^{2}+b x+c=0
$$

So, in $2 x^{2}+6 x-55=0, \quad a=2, b=6$ and $c=-55$.

$$
\begin{aligned}
x & =\frac{-6 \pm \sqrt{36+440}}{4} \\
& =\frac{-6 \pm \sqrt{476}}{4}
\end{aligned}
$$

So

$$
\begin{aligned}
x & =\frac{-6+\sqrt{474}}{4} \text { or } \begin{aligned}
x & =\frac{-6-\sqrt{474}}{4} \\
& =3.942885264
\end{aligned} & & =-6.94288526
\end{aligned}
$$

	$x \mid+3$
x	$x^{2}+3 x$
+3	$+3^{2} x \mid+9$

4 Find the equation of a straight line from two points.
A line runs through the points $(4,2)$ ad $(-3,5)$. What is the equation of the line?
Determine the left most point by comparing the x co-ords. -3 is lower than 4 or $-3<4$.

$$
\begin{aligned}
\text { Point }_{1} & =(-3,5), \quad \text { Point }_{2}=(4,2) \\
x_{1} & =-3 \\
x_{2} & =4
\end{aligned} \quad y_{1}=5
$$

Find the gradient, m :

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{4-(-3)}=\frac{-3}{7}
$$

Find the intercept:
At point $(4,2), x=4$ ad $y=2$.
The equation for a straight lone is $y=m x+c$

$$
\begin{aligned}
\therefore \quad 2 & =-\frac{3}{7}(4)+c \\
\therefore \quad c & =2+\frac{3}{7}(4) \\
& =2+\frac{12}{7} \\
& =\frac{14}{7}+\frac{12}{7} \\
& =\frac{26}{7} \\
& =3 \frac{5}{7}
\end{aligned}
$$

So the equation of the line is $y=-\frac{3}{7} x+\frac{26}{7}$

