Lines and Circles

- 1. A line has the equation $x^2 + y^2 = 25$. What is the length of this line?
- 2. A circle has the equation $(x + 7)^2 + (y 3)^2 = 25$.
 - a What are the co-ordinates of the centre of this circle?
 - b What is the area of the circle?
- 3. A circle has the equation $x^2 + y^2 = 49$. Another line has the equation y = x + 2. At what points do these two lines intersect each other?
- 4. A circle A has the equation $x^2 + y^2 = 81$.
 - Another line B runs through the points (-12,-2) and (-10,1).
 - a Find the equation of line B.
 - b. Find the co-ordinates of the points where line B intersects circle A.
- 5. A circle A has the equation $(x 5)^2 + (y 8)^2 = 36$. Another line B runs through the points (-14,-2) and (-4,2). Find the equation where the line B intersects with circle A.

Success Criteria	Completed
I can identify the radius of a circle from the	
equation of the circle in the form	
$x^2 + y^2 = r^2$	
I can calculate the circumference of a circle	
using the formula $C = 2\pi r$	
I can calculate the area of a circle using the	
formula $A = \pi r^2$	
I can find the centre of a circle from the	
equation of the form:	
$(x-a)^2 + (x-b)^2 = r^2$	
I can find the gradient of a straight line	
given two points.	
I can find the intercept of a straight line	
given a gradient and a point.	
I can fine the equation of a straight line in	
the form $y = mx + c$	
I can solve simultaneous equations	
including an equation in quadratic form by	
substitution.	

Lines and Circles Examples

1 A line has the equation
$$x^2 + y^2 = 64$$
.
What is the radius?
General equation for a circle is $x^2 + y^2 = r^2$ where
r is the radius.
So the radius of $x^2 + y^2 = 64$ is $\sqrt{64} = 8$.
What is the circumforence?
 $C = 2 \pi r$
 $= 2 \times \pi \times 8$
 $= 16 \pi$
 $\simeq 50.2654826$
 $\simeq 50.27$ (to 2 d.p.)
What is the area?
 $A = \pi r^2$
 $= \pi \times 8 \times 8$
 $= 64\pi$
 $\simeq 201.0619298$
 $\simeq 201.06 (to 2 a.p.)$

(1)

2

 $(x+a)^2 + (y+b)^2 = 64$ would yield a circle of the same size as $x^2 + y^2 = 64$. The difference would be the co-ordinates of the centre of the circle. These would be (-a, -b). So a circle with the equation $(x-5)^2 + (y+3)^2 = 64$ would have a radius of 8 and a centre at (5, -3)as a minus x a minus is a plus and a plus times a minus is a minus.

3 A circle has the equation
$$x^2 + y^2 = 64$$
.
A live has the equation $y = x + 3$.
How do you find the interacting points?
 $x^2 + y^2 = 64$
 $x^2 + y^2 = 64$
 $x + 3 + 3x + 9$
 $x^2 + x^2 + 6x + 9 = 64$
 $2x^2 + 6x - 55 = 0$
Use the Quadratic formulae:
 $x = -b^{\pm} \sqrt{b^2 - 4ac}$ for $ax^2 + bx + c = 0$.
 $x = -b^{\pm} \sqrt{b^2 - 4ac}$ for $ax^2 + bx + c = 0$.
So, in $2x^2 + 6x - 55 = 0$, $a = 2$, $b = 6$ and $c = -55$.
 $x = -6^{\pm} \sqrt{36 + 440}$
 4
 $= -6^{\pm} \sqrt{476}$
 4
So $x = -6^{\pm} \sqrt{476}$ or $x = -6 - \sqrt{474}$
 4
 $x = -6 + \sqrt{476}$
 4
So $x = -6 + \sqrt{476}$
 4
 $x = -6 + \sqrt{476}$
 4
 $x = -6 + \sqrt{472885264}$
So, with these x -coordinates, we can substitute
each one in term into the equation to find the y-coordinates.
 $y = x + 3$
 $= 3.942885264 + 3$
 $= 3.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -6.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264 + 3$
 $= -3.942885264$

4 tind the equation of a straight line from two points. (3)
A love runs through the points (4,2) and (-3,5). What
is the equation of the line?
Determine the left most point by comparing the x co-ords.
-3 is lower than 4 or -3<4.
Point, = (-3,5), Point₂ = (4,2)

$$x_1 = -3$$
 $y_1 = 5$
 $x_2 = 4$ $y_2 = 2$
Find the gradient, m:
 $m = \frac{Ay}{Ax} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2-5}{4-(-3)} = \frac{-3}{7}$
Find the intercept:
At point (4,2), $\alpha = 4$ and $y = 2$.
The equation for a straight lone is $y = mx + c$
 $\therefore 2 = -\frac{3}{7}(4) + c$
 $\therefore 2 = -\frac{3}{7}(4) + c$
 $\therefore 2 = \frac{-3}{7}(4) + c$
 $\therefore 2 = \frac{-3}{7}(4) = \frac{14}{7} + \frac{12}{7}$
 $= \frac{26}{7}$
 $= 3\frac{5}{7}$
So the equation of the line is $y = -\frac{3}{7}x + \frac{26}{7}$